
 1

Thinking for a Change

Origins
The “Thinking Processes” originated from the Theory of Constraints, the ideas for
process improvement developed by Elyahu Goldratt. He realized that he was
becoming a bottleneck in the dissemination of the ideas behind the Theory of
Constraints. The Thinking Processes are a set of tools and heuristics that Goldratt
uses.

The Theory of Constraints’ process optimisation technique “The 5 focusing steps” is
easily applied to physical, logistical processes like manufacturing, because the
bottleneck and flows are visible. Applying the same ideas to more abstract problems
in knowledge work or to improve rules and organisations is a lot more difficult. The
Thinking Processes tools allow us to visualize this kind of situation.

The Thinking Processes were introduced in Goldratt’s second business novel “It’s Not
Luck”. “Thinking for a Change” is the title of a book about the Thinking Processes,
written by Lisa Scheinkopf.

Goals of the tools
 Verbalize and make explicit intuition about systems and situations
 Allow a group to analyse and discuss situations, to come to a shared

understanding
 A structured method to uncover hidden assumptions and question them in a

constructive manner
 Create consensus before a major decision, by involving all affected

stakeholders (“Nemawashi”)
 Provide a structured, step-by-step approach to systems thinking that helps

participants to focus on the goals to achieve.

The different tools
 Current Reality Tree: helps you to find one or a few root causes for

problems you’re facing. Now you know where to intervene to really solve the
problems.

 Future Reality Tree: helps you to visualize the effects of a proposed
intervention, including potential undesirable effects. Now you know if your
intervention will result in the desired and effect. You know the extra
interventions you will need to undo or avoid negative side effects.

 Transition Tree: allows you to map a path from where you are to where you
want to be, by laying out a series of actions that will bring you closer to the
goal, via a series of intermediate milestones.

 Prerequisite Tree: allows you to plan back from a desired state, by looking
for actions that overcome obstacles.

 Evaporating Cloud: allows you to resolve conflicts between different courses
of action, by surfacing and examining assumptions.

 2

Simple Notation

Entity
An entity is an element of the system. It describes a certain state.

Cause – Effect

The car doesn’t start (effect) BECAUSE the battery is dead (cause).

And Connector

The car doesn’t start BECAUSE the battery is dead AND we have no spare battery.

Assumption

The car doesn’t start BECAUSE the battery is dead IS ONLY TRUE IF cars need
batteries to start.

Action (or injection)

BECAUSE we’ve charged the battery, the car starts.
.

The battery is dead

The battery is dead Car doesn’t start

The battery is dead

Car doesn’t start

We have no
spare battery

The battery is dead Car doesn’t start

Cars need batteries to start

Charge battery Car starts

 3

Making a Current Reality Tree
Find the root cause of undesirable effects

Step 1: Describe the system, its goal and the symptoms
1. Determine the scope of the system: what is the system we’re analysing? What

are its boundaries?
2. What is the goal of the system? Why does it (continue to) exist? What are the

major measures of success?
3. Brainstorm a few (< 5) undesirable attributes of this system. What’s bothering

you? What could be done better? Don’t analyse, just write them down. Use
simple, definite sentences. These are your initial entities.

Example:
1. System: This is about the IT organisation (several hundred people) that

supports the Belgian Postal system. More specifically, about the development
teams that write the software and the operations teams (admins) that install
and support the software.

2. The goal of the system is to create and maintain the IT systems that allow the
business to offer its service and generate value. We can measure this by
looking at “business value” generated vs cost.
To make projects more manageable, more focused and to deliver value sooner,
developers would like to make smaller releases, which are installed sooner and
often, thereby increasing business value. However, this is not allowed:
because installing software is difficult and risky, more frequent releases would
increase costs for operations.

3. The goal of the tree is to find the root causes for the cost and risk of
installations. If we can tackle those, we might be able to release more
frequently. See the “Evaporating Cloud” later in this document.

4. Initial undesirable entities:
 Installing is difficult
 Installing is risky

 4

Step 2: Find effect-cause-effects. “Why does this happen?”
1. Start with the worst entity. Which one would you like to get rid of most?
2. Ask yourself: “Why <entity>?”

 If the answer is a new entity, create it
3. Connect the cause to the effect
4. Repeat the question for the other effects to work in the breadth of the diagram
5. or ask the “Why” question for the causes to drill deeper

 You might find more than one cause for an effect
 You might find more than one effect from a cause

Note: in the “Toyota Way” there is a technique called the “5 Whys”, indicating that
you should look for the root cause approximately 5 levels down from the original
symptom.

Example:
We start with the following entities:

Q: “Why is installing difficult?”
A: “Installing is difficult BECAUSE it requires many manual steps” (new entity)
A: “Installing is difficult BECAUSE it usually involves many systems” (new entity)

Q: “Why is installing risky?”
A: “Installing is risky BECAUSE it usually involves many systems”

Q: “Why do installs require many manual steps?” (Digging deeper)
A: “Installs require many manual steps BECAUSE developers don’t know how to
automate tasks using scripts”.

Release is difficult to install Release is risky to install

Requires manual steps Involves many systems

Release is difficult to install Release is risky to install

Developers can’t script

 5

Step 3: Legitimate reservations, testing the model
The “legitimate reservations” are critical questions to ask when making a tree. When
you’ve added a few entities and/or relations, stop to ask these questions, to clarify and
simplify the tree. This is the moment to make assumptions explicit so that everybody
participating in the exercise agrees on the current state of the tree, before going
further.

Important: only the legitimate reservations are allowed. Don’t accept any kind of
complaint, “Yeah but” or “That won’t work”.

There are two categories of reservations. Test them in the given order.

1. Level 1 reservations involve a single entity or relation at a time
a. Clarity: does everyone understand the entity description the same

way? Can you make the description clearer, simpler, less ambiguous?
Restate the entity in a different way to verify if everyone understands
the entity like you do.

b. Entity existence: does everyone agree that the entity exists? How can
we “see” the entity? What proof do we have of its existence?

c. Causality existence: is everyone convinced that the entity really
causes the effect? What are the assumptions behind that relation?

2. Level 2 reservations involved more than a single entity and relation
a. Additional Cause: Is the given entity the only possible cause for the

effect? What else could have that effect? Could that additional cause
also exist in the system? If so, how could we tell? Add the additional
cause if you think it plays a role in creating the effect.

b. Insufficient Cause: is the given entity sufficient to create the given
effect or must it be combined with another entity? If so, add the other
cause and indicate that they must occur together to cause the effect.

c. Predicted Effect: can we imagine another effect caused by a given
entity? If so, is this additional effect visible in the system? If it is, that
strengthens the case for the existence of the entity. How could we
disprove the existence of the entity? Can we perform (simulate) this
test?

Example:
Clarity: “Installing is difficult” => “Installing takes more than ½ hour”
Existence: “Installing takes more than ½ hour” is easy to see. “Installing is risky”
could be deduced from the number of installations that have to be redone.
Causality: “Installations have many manual steps” BECAUSE “developers don’t
know how to automate using scripts”. Assumption: most of the steps in the
installation can be automated using scripts. Verification: some applications use
similar technology, yet have almost fully automated installs.
Additional Cause: “Installations have many manual steps” could also be caused by
“Developers don’t have the time/motivation to automate their installation”.
Insufficient Cause: “Installations have many manual steps” BECAUSE “Developers
don’t automate them (for whatever reason)” AND “Nobody else but developers
automates installs”.

 6

Predicted Effect: IF “Developers don’t know how to automate tasks using scripts”
WE EXPECT THAT “no other tasks (e.g. builds) are automated”. Can we verify that?

Requires manual steps Involves many systems

Installing takes more than ½ hour Release is risky to install

Developers can’t script

Developers don’t have
time/motivation to automate

Nobody else but developers
automates installs

No other tasks have
been automated

 7

Step 4: Digging deeper and pruning the tree to find the root cause
1. If an effect has multiple causes, verify the “weight” of each cause. If an effect

is mostly caused by one or a few entities and rarely by other entities, prune the
causes that do not contribute much to the effect. Use the 80/20 rule.

2. Dig deeper by asking WHY questions until you find one or a few entities that
are responsible for causing most of the effects.

3. Take care not to create entities that are too abstract. Keep on applying the
legitimate reservations.

Example:
Q: “Why are installations so risky?”
A: “Because admins don’t understand the applications they install and maintain well”

Q: “Why don’t developers know how to automate tasks using scripts?”
A: “Because they’re never involved (and don’t know about) installing and
maintaining servers”

Q: “Why are developers not involved?”
A: “Because the development and operational organisations are totally separate
(separate management, separate budget)”

Q: “Why don’t the admins understand the applications they install and maintain
well?”
A: “Because they’re not involved in the design, build and test of the application”.
A: “AND Because the systems have many dependencies on other systems”.

Q: “Why are admins not involved?”
A: “Because the development and operational organisations are totally separate
(separate management, separate budget)”

Requires manual steps

Involves many systems

Installing takes more than ½ hour Release is risky to install

Developers
can’t script

Admins don’t
understand

Developers not involved
in maintenance Admins not involved in

development

Development and
Operations separated

Developers not
motivated to script

 8

We’ve cleared away some entities that don’t directly contribute to the problem. E.g.
the predicted effect that no other tasks have been automated. This is indeed the case:
teams that don’t automate their install have no other automated tasks.

More importantly, we have found a core cause of many of the problems: the
developers and admins are part of totally separate organisations, with separate budgets
and management. Both organisations have different goals:

 The goal of the development organisation is to create valuable systems, as fast
and cheap as possible. In Throughput Accounting terms: to maximize
Throughput (business value), while minimizing Investment.

 The goal of the operations organisation is to keep maintenance costs as low as
possible. In Throughput Accounting terms: to minimize Operating Expense.

If we look at the diagram again, we can see another potential root cause: the
architecture of the systems is very complicated, with many dependencies. This makes
the systems harder to understand and harder to automate installs (as that might
involve many servers). We can tie this back to the separation of the organisations:

 As admins are not involved in architecture and design, they can’t influence the
architecture.

 As developers are not involved in maintenance, they don’t feel the pain of
keeping these complicated architectures running.

This strengthens the case against the root cause. What can we do about this problem?

Requires manual steps

Involves many systems

Installing takes more than ½ hour Release is risky to install

Developers
can’t script

Admins don’t
understand

Developers not involved
in maintenance Admins not involved in

development

Development and
Operations separated

Developers not
motivated to script

 9

Making a Future Reality Tree
Explore the intended and unintended consequences of an action.

Step 1: Start the tree with an injection and a goal
1. Create an entity that represents the goal you want to reach. This could be the

inverse of an undesired effect or root cause from a current reality tree
2. If you have more goals, state them as entities. Don’t try to reach too many

goals at once!
3. Don’t compromise your goals, because you think they are unattainable! We’re

trying to find out if and how they can be attained. Don’t admit defeat before
you start.

4. Brainstorm a few actions you could take to achieve the goal(s).
5. Select the most promising action and create an entity that represents it. Write

the entity as a simple sentence. This will help you imagine that you have
already taken the action, so that you can explore its consequences. This entity
is called the injection.

6. Put the injection entity at the bottom of the diagram
7. Put the goal entity (entities) at the top of the diagram.

Tip: write using present tense and don’t use tentative phrasing (maybe, might,
possibly…), this will help you imagine the future.

Example:
Goals:
Let’s try do something about the problem described above. What are our goals?

 Releases are installed reliably, first time, each time.
 Installing a release takes less than ½ hour.

These are just the undesirable effects from the CRT, reversed.
Injection(s):
How can we bring about these goals? We can’t do anything about the root cause (yet),
because the way the company is organized is not something we can change (quickly).
But… could we do something to involve developers in maintenance and admins in
development?
I propose two actions:

 Developer and admin pair-install the system
 Admins review the architecture of the application

Release works Release is fast

Pair install Architecture review

 10

Step 2: List consequences of the action
1. Starting with the action, list the effects it has (remember, think and write in

present tense).
2. Apply the categories of legitimate reservations after adding a few entities and

relations.
3. If any of the effects are negative or undesirable, or if someone starts to raise

objections, stop and examine the diagram:
a. “You can’t do that!” If an action has a desirable effect, but someone

thinks it’s impossible to perform that action, don’t argue. You have
discovered an obstacle.

b. “You don’t want that to happen!” If an action has an undesirable
(side) effect, don’t argue. You have discovered a negative branch
reservation.

4. Note the obstacles and negative branch reservations; we’ll revisit them in the
next step.

5. If you get stuck reasoning forward from the actions to the goal(s), try to reason
backwards from the goals and vice versa.

Examples:
What are some inferences we can draw from the actions?

 IF admin/developer pair-install THEN developer experiences installation
problems firsthand”

 IF developers experiences installation problems THEN developer is motivated
to avoid these problems

 IF admin/developer pair-install THEN installation problems get resolved
quickly, because developer knows application well

 IF problems get solved during install THEN admin learns about the system
 IF developer and admin pair-install THEN they get to know each other
 IF developer and admin know each other THEN they work together to

improve the system
 IF developer and admin work together to improve the system AND admin

learns about the system AND developer is motivated to avoid installation
problems THEN they will make next release’s installation by automating
more, by making the system simpler or by reducing configuration needs.

 IF developer and admin perform architecture reviews THEN they get to know
each other AND the admin learns more about the system AND they can
improve the system together.

 11

Release works Release is fast

Pair install Architecture review

Dev experiences
problems

Dev motivated to
avoid problems

Problems solved
quickly

Admin learns

Get to know each
other

Improve system
together

 12

Step 3: Yeah, but… Dealing with obstacles and negative branch
reservations

1. Dealing with obstacles: examine the reasoning behind the obstacle. Is there
some other action you could take to remove the obstacle? If yes, add it to the
diagram as an additional cause for the effect and note the assumption that this
action removes the obstacle. If you see no immediate way to remove the
obstacle, note the obstacle. You can try to apply a Prerequisite Tree to
remove the obstacle.

2. Dealing with negative branch reservations: examine the reasoning leading to
the negative effect using the legitimate reservations.

a. If the effect requires more than one cause, is there a way to remove one
of the causes by taking some action? If so, add the action and remove
the unintended effect. Note the assumption that taking this action
removes the cause and thus the effect.

b. Add the opposite of the negative effect as a goal. Use the same
techniques as for the other goals to find actions that bring about this
goal. If you succeed in reaching the goal, you can leave off the
undesirable effect. Add the new action as a prerequisite to the intended
effects of the action that caused the undesirable effect you removed.

Examples:
Undesirable effects:

1. If developers are involved in the installation, there will be even more hacks
than before during installations. Installations will become even less
repeatable. You don’t want that.

2. If developers are involved in the installation, the developer spends time doing
(unplanned) work that’s not in their job description. You don’t want that.

Obstacles:
1. “You can’t pair install”, production servers are off-limits for developers, for

obvious security and privacy reasons.
2. “Developers and admins aren’t motivated to work together”. Because the

two organisations are separated, there’s an “over the wall” culture.

Resolving the objections:

 Obstacle 1 can be resolved by changing the role of the developer: they are
“observers”. The observer responds to questions of the admin and notes where
the installation instructions are unclear. In both cases, the observer then
updates the installation document. => Change injection “Pair install” to
“Developer observes admin”.

 The previous change would also remove Undesirable effect 1: with this
feedback, the installation document will become clearer and hacks will be
required less often.

 To remove Undesirable effect 2, the PM would have to put this installation
time in the plan. But even if he doesn’t, the developers are always idle
between two releases, so there’s no real time loss. If our releases become
faster, developers and admins have more time.

 13

 To remove Obstacle 2, the PM would have to motivate or tell developers and
admins to work together. That’s feasible for the developers, but not the
admins. A PM has no authority over people in other teams and organisations.
There are two ways the PM can motivate developers and admins:
1. Involve admins from the start of the project, so that they know what

they’re working on and their input is valued
2. Throw a small release party to celebrate the successful release. Use the

relaxed atmosphere to perform an informal retrospective, to improve the
next installation of the release.

If we perform these actions, the tree looks like this.

Release works Release is fast

Developer
observes

Architecture review

Dev experiences
problems

Dev motivated to
avoid problems

Problems solved
quickly

Admin learns

Get to know each
other

Improve system
together

Release party-
retrospective

PM motivates

 14

Step 4: Getting to the goal and stabilizing with reinforcing loops
1. Keep on applying the steps above to get to the goal(s) you set.
2. You might have to backtrack, remove actions, add other actions.
3. When you reach the goal, try to find a reinforcing loop. A reinforcing loop is a

causal relation from an entity high up in the tree (near or at the goal) to an
entity lower in the tree (nearer the actions you want to take).

a. Examine the entities from top to bottom, starting with the goal
b. Check if this entity could cause an entity lower down, from bottom to

top.
c. Apply the legitimate reservations if you find a candidate relation.

4. Reinforcing loops can help keep a goal “alive” by reinforcing the actions that
bring about the goal. However, too much of a good thing can be bad: be aware
of possible negative effects from repeatedly performing an action or
strengthening a goal.

Examples:
It’s clear that there has to be a working release to have a party. Therefore, the release
party should be at the top, caused by the working release. This is already a high up
cause that has a low down effect. That’s great to keep people motivated.
Still, how do we get the system started? The PM has to motivate developers and
admins somehow. Involving admins early in the process, so that they really feel part
of the team is a good way to do that.

Release works Release is fast

Developer
observes

Architecture review

Dev experiences
problems

Dev motivated to
avoid problems

Problems solved
quickly

Admin learns

Get to know each
other

Improve system
together

PM motivates

Release party-
retrospective

 15

What we’re doing here is to create a “cross-functional virtual team”. Some team
members are permanent, like the developers of the project. Other members are part of
the team for (part of) this release only, like admins or developers of other impacted
projects. These people are part of many virtual teams.
The PM has no formal authority over them, so they have to motivate those people to
want to work for a team. It’s very important that every member has a clear view of the
goal and knows how they participated in bringing this goal about.
By creating these virtual teams, we are dealing with the root cause of the problems:
“development and operations are separated”. We are in effect creating a matrix
structure, which keeps the good parts of the separation (clear roles, security and
privacy), but removes the bad results (“over the wall” mentality, poor knowledge and
attention to detail by developers about installation and maintenance). Even though we
can’t do anything about the root cause, we can do something about it.

There is one dangerous point in this diagram: it’s up to the PM to get this system
started and to keep it going (with the help of the release party). What if this injection
falls away? One way of dealing with this, would be to encode the other injections
(“developer observes”, “architecture review” and “release party-retrospective”) in the
standard process of the organisation. That would require some injections to spread the
idea and to get it started. But afterwards, we hope the system becomes self-sustaining.

 16

The evaporating cloud
Examine the reasoning behind two conflicting statements

Step 1: Articulate the problem: where’s the conflict?
1. Describe the system and its goal, if you haven’t already.
2. Are you sure you want to solve this problem?
3. State the two sides of the conflict as entities (D and D’)
4. State the goal of the system as an entity (A)
5. Add an entity B, so that: in order to achieve A, we need B. In order to achieve

B we need D.
6. Add an entity C, so that: in order to achieve A, we need C. In order to achieve

C we need D’.
7. You should have a diagram like this:

You should be able to read the diagram out loud like:
“In order to have A, B must exist. We also need C in order to have A.
We can’t get B, unless we have D. We must have D’ in order to have C.
D and D’ are mutually exclusive, they cannot coexist.”

Example:
This is the IT organisation of a large company. Developers want to release more often
to bring value sooner and to reduce risk. Admins want to install fewer releases to
reduce costs and to reduce risk. Both of these departments together want to provide
systems that provide the best value for the lowest cost to the business.

“In order to provide good value for money to the business, developers must provide
systems that provide high value at low risk (B->A). The admins must also ensure that
these systems are installed and maintained at low cost and low risk (C->A). In order
to have higher value and lower risk, developers need to release smaller releases, more
often (D->B). In order to lower maintenance and installation costs and risk, admins
need to make fewer changes to the systems (D’->C). Releasing more often AND less
often is mutually exclusive, they cannot co-exist” (D<->D’).

A. Common goal

B. Requirement 1

C. Requirement 2

D. Conflict side 1

D’. Conflict side 2

A. Value for
money to the
business

B. High system
value

C. Low system
cost & low risk

D. Release more often

D’. Release less often

 17

Step 2: Examine the diagram with the legitimate reservations
1. Does the diagram satisfy the level 1 reservations:

 Clarity ?
 Entity existence ?
 Causality existence ?

2. Does the diagram satisfy the level 2 reservations:
 Additional cause ?
 Sufficient cause ?
 Predicted effect ?

3. Take note of any assumptions
4. Are D and D’ really mutually exclusive?

 Why can’t D and D’ co-exist? Note any interesting assumptions.
 Why aren’t we allowed to have D and D’? Note the assumption.
 Is there any overlap between D and D’? If so, can you separate them more

cleanly, while holding on to the common part?

Example:
Clarity: what does release more often/less often mean? Typical projects now take
around 6 months. Developers would like to release every 2 months.
Entity existence:
Causality existence:

 Does releasing more frequently increase value? Yes: business people have
been asking for shorter releases, to be able to react faster to the competition.

 Does releasing less frequently reduce cost? Yes: systems admins have to
spend time planning and executing the change. There are often problems
during or shortly after a release, so that admins have to perform emergency
fixes.

 Does releasing less frequently reduce risk? Yes: if you leave the systems
alone, you don’t risk downtime or regression problems.

Additional cause:
 Is there another way to deliver value sooner, without releasing more often?

We could make the system more configurable by users, so that they could
make more changes without involving IT. But this is insufficient to be able to
support all the features in the new releases.

 Is there another way to reduce risk and cost of installations, except not
releasing? Maybe….

Sufficient cause: does releasing often suffice to create value? No: we must also
ensure that the release contains high value features and that they work. Let’s assume
this is the case.
Predicted effect: can we disprove “releasing less often reduces cost and risk”. Yes, if
we can find projects that release often, yet are not costly or risky to install. Is this the
case? Yes, there are one or two such projects. We should examine what they do
differently. Why is it that most projects are risky and costly to install? We can
examine this problem using a Current Reality Tree (see start of document). If we can
find a way to make releases cheap and safe to install, we can remove D’, thus
resolving the conflict.

 18

Bibliography
The Goal: A Process of Ongoing Improvement, Elyahu Goldratt (ISBN: 0566086654)
It’s Not Luck – Elyahu M. Goldratt (ISBN: 0566076276)
Thinking for a Change: Putting the TOC Thinking Processes to Use – Lisa M.
Scheinkopf (ISBN: 1574441019)
A Guide to Implementing the Theory of Constraints – http://www.dbrmfg.co.nz/
The Toyota Way: 14 Management Principles From The World's Greatest
Manufacturer – Jeffrey K. Liker (ISBN: 0071392319)
The Logical Thinking Processes – William H. Dettmer (ISBN: 9780873897235)

For more books about the subject, see:
http://wiki.systemsthinking.net/Systemsthinking/BookList.html

Thank you for participating in this session.

Marc Evers Pascal Van Cauwenberghe
Piecemeal Growth Nayima
The Netherlands Belgium
http://www.piecemealgrowth.net http://www.nayima.be
marc@piecemealgrowth.net pvc@nayima.be

