

를. 0
Programmed by Thien Que Nguyen and Pascal Van Cauwenberghe

Thien Que Nguyen

Pascal Van
Cauwenberghe

Consults
Manages projects
Analyzes business
Creates games
Teaches yoga
Organizes conferences
http://atbru.be
Consults
Manages projects
Tests, programs, analyzes
XP DAYS BENELUX
http://xpday.net
Creates games

Tells tall stories
Organizes conferences

Acceptance Test

DWe had fun

aWe solved the puzzle
YYou look at concurrent systems differently
-You've learned something you can apply Din your work and life

YYou want to know more

"Computers"

MENU!

Demo: TDD Cell
Exercise 1: TDD Grid
Exercise 2: TDD Region
Theory
Human Computer Simulation

TDD Human Computer

Cell Specification [1][2][3][4][5][6]

A Cell expresses which of the numbers 1.6 are possible
By default every number is possible
If there is more than one possible number, the value of the cell is unknown If exactly one number is possible, the value of the cell is known == number If there are no possible numbers there is a contradiction, this is impossible

Demo TDD: Cell (1)

1	2	3	4	5	6

-GIVEN a new Cell

Question	Answer
How many numbers are possible?	6
What is the value of the cell?	UNKNOWN
Is 5 a possible value?	Yes
Is 2 a possible value?	Yes

Demo TDD: Cell (2)

| 1 | 2 | | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

-GIVEN a new Cell
-When 3 is not possible
-When 4 is not possible

Question	Answer
How many numbers are possible?	4
What is the value of the cell?	UNKNOWN
Is 5 a possible value?	Yes
Is 3 a possible value?	No

Demo TDD: Cell (3)

-GIVEN a new Cell
-When the value is known to be 3

Question	Answer
How many numbers are possible?	1
What is the value of the cell?	3
Is 5 a possible value?	No
Is 2 a possible value?	No

Demo TDD: Cell (4)

-GIVEN a new Cell
-When number 1, 6, 3, 2, 5, 4 are not possible

Question	Answer
How many numbers are possible?	0
What is the value of the cell?	IMPOSSIBLE

Grid Specification (1)

A Grid has a name: A, B, C, D, E, or F
A Grid consists of 3×2 Cells
Cells are addressed as (Row, Column)
IF a Cell within a Grid has a known value THEN NO other Cell can have the same value

Grid - Example (1)

Example: Cell $(2,1)=4$

COLUMN 1

$(1,1)$					
1	2	3	A	5	6
$(2,1)$					

\boldsymbol{z}	$\boldsymbol{2}$	$\boldsymbol{3}$	$\mathbf{4}$	$\mathbf{5}$

$(3,1)$
ROW 3

COLUMN 2
$(1,2)$

1	2	3		5	6
$(2,2)$					

1	2	3		5	6

$(3,2)$

1	2	3	\ddots	5	6

Grid Specification (1)

IF a cell in a grid has a known value THEN all cells on the same row of all grids to the left and to the right can not have the same value

A	B	C
D	E	F

Grid - Specification (2)

- Example: Grid E cell(2,1) = 6

A	B	C
D	E	F

Grid D
ROW 1
COLUMN 1
$(1,1)$

1	2	3	4	5	6
$(2,1)$					

ROW 2

1	2	3	4	5	ξ	
$(3,1)$						
1	2	3	4	5	6	

1	2	3	4	5	6

ROW 3

1	2	3	4	5	\mathfrak{f}
$(3,2)$					
1	2	3	4	5	6

Grid Specification (1)

IF a cell in a grid has a known value THEN all cells on the same column of all grids above and below can not have the same value

A	B	C
D	E	F

Grid - Specification (3)

- Example: Grid E, cell(2,1) = 6

A	B	C
D	E	F

Grid B
ROW 1
COLUMN 1
$(1,1)$

1	2	3	4	5	f
$(2,1)$					

ROW 2

1	2	3	4	5	θ
$(3,1)$					

ROW 3

1	2	3	4	5	6

COLUMN 2
$(1,2)$

1	2	3	4	5	6
$(2,2)$					

$(3,1)$

1	2	3	4	5	6
$(3,2)$					
1	2	3	4	5	6

Execute Grid Tests

Get Ready...
Start! 10 mins execution time

Region Specification (1)

A Region contains a Grid
A Region has 4 inputs: North, East, South, West
A Region has 4 outputs: North, East, South, West
A Region has an output Display

Region Specification (2)

- When you discover the value of a cell

Send a message Gridname(Row,Column)=Value
To the Display
And to all output channels

- You discover the starting values of a few cells.
- You must send these values to the Display and all the output channels

Region Specification (2)

When you receive a GridName(Row,Column) = Value From the North or South

The Grid can't have Value in that column

When you receive a GridName(Row,Column) From the East or West

The Grid can't have Value in that row

- And Send the message on to the other side

Execute RegionTests

Get ready...Start!
15 mins execution time

What happened?

And a smidgen of theory

CSP = Communicating Sequential Processes

The 3 elements of CSP

- Processes
- Independent, sequential, black box
- Channels
- Send and receive messages
- ALT(ernating)
- Wait for channels or timers

Back to 1985!

Back to 1985!

- Occam
- Transputer

Back to 1985!

Benefits of CSP

- Separation between "domain" and "collaboration"
- No shared mutable state => no locking (bugs)
- Easy and fast unit tests
- Easy to simulate edge cases
- Composable. Composite Process can be tested

How do you test concurrent code?

1. TDD single threaded domain objects
2. Encapsulate domain objects in CSP Processes
3. TDD each Process in isolation

- WHEN send(input,value)
- THEN expected_value == receive(output)
- WHEN time.advance(amount)
- THEN expected_value == receive(output)

4. TDD composed Processes

- TDD the inputs/outputs of ever larger ensembles

Concurrent != Parallel

To solve a real Sudoku

Another CSP

- Constraint Satisfaction Problem
- A set of variables (81 cells)
- Each variable has a Domain of possible values (1..6)
- There are constraints between variables (e.g. All cells in a 3×3 grid must have distinct values)

Constraint satisfaction

Acceptance Test

DWe had fun

aWe solved the puzzle
YYou look at concurrent systems differently
-You've learned something you can apply Din your work and life

YYou want to know more

If you want to know more

- Tony Hoare:http://www.usingcsp.com/
- C++:http://www.cs.kent.ac.uk/projects/ofa/c++csp/
- Java:http://www.cs.kent.ac.uk/projects/ofa/jcsp/
- Go: http://golang.org/
- Clojure: http://clojure.org/
- Download from http://agilecoach.net
- https://github.com/pascalvancauwenberghe/concurrent

Are you ready to execute the program?

We need (N) $\times 8$ players to run the simulation
You can also observe

Assemble the Computer

Run the simulation

Pause when you've sent all messages for known values
Check Display of known values Process all incoming messages

